Anomalous Diffusion and Griffiths Effects Near the Many-Body Localization Transition
نویسندگان
چکیده
منابع مشابه
Anomalous diffusion and griffiths effects near the many-body localization transition.
We explore the high-temperature dynamics of the disordered, one-dimensional XXZ model near the many-body localization (MBL) transition, focusing on the delocalized (i.e., "metallic") phase. In the vicinity of the transition, we find that this phase has the following properties: (i) local magnetization fluctuations relax subdiffusively; (ii) the ac conductivity vanishes near zero frequency as a ...
متن کاملMany-body localization phase transition
We use exact diagonalization to explore the many-body localization transition in a random-field spin-1/2 chain. We examine the correlations within each many-body eigenstate, looking at all high-energy states and thus effectively working at infinite temperature. For weak random field the eigenstates are thermal, as expected in this nonlocalized, “ergodic” phase. For strong random field the eigen...
متن کاملRadiative heat transfer: many-body effects
Heat transfer by electromagnetic radiation is one of the common methods of energy transfer between objects. Using the fluctuation-dissipation theorem, we have studied the effect of particle arrangement in the transmission of radiative heat in many-body systems. In order to show the effect of the structure morphology on the collective properties, the radiative heat transfer is studied and the re...
متن کاملGriffiths effects and slow dynamics in nearly many-body localized systems
Sarang Gopalakrishnan,1 Kartiek Agarwal,2 Eugene A. Demler,2 David A. Huse,3 and Michael Knap4 1Department of Physics and Walter Burke Institute, California Institute of Technology, Pasadena, California 91125, USA 2Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA 3Princeton University, and Institute for Advanced Study, Princeton, New Jersey 08544, USA 4Department o...
متن کاملMany-body Localization of Cold
In the seminal 1958 paper, Anderson cites the problem of spin diffusion as a motivation to study the quantum effect of localization [1]. The conclusion about the stability of a localized phase was actually reached there for a single quasiparticle hopping between sites with random, broadly distributed energies. The single-particle localization theory, applicable to various systems comprised of n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2015
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.114.160401